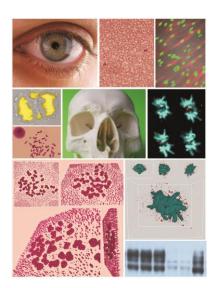
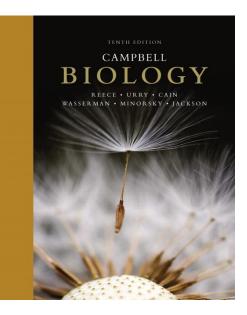
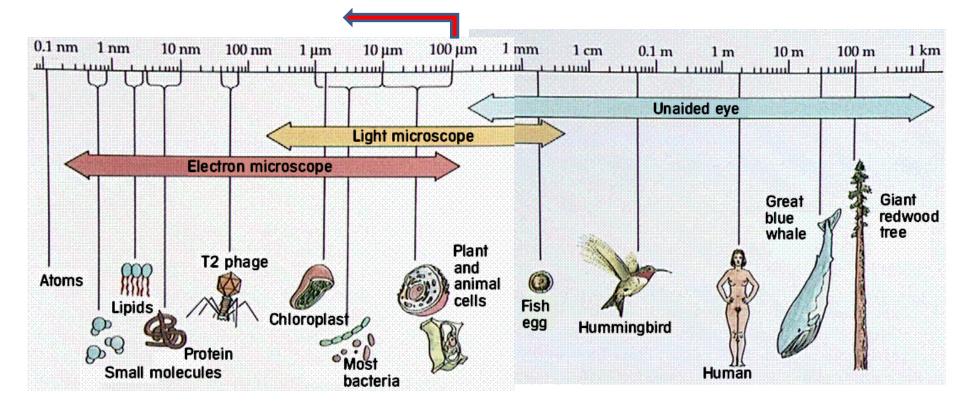
Chemical introduction


Katalin Kiss


Topic list

- 1. Chemical basis of life 1 (atoms, biological elements)
- 2. Chemical basis of life 2 (functional groups, bonds, water, pH)
- 3. Lipids and Carbohydrates
- 4. Amino acids, Proteins, Biochemical reactions, Enzymes
- 5. Nucleosides, nucleotides, nucleic acids
- 6. Discovering the genetic material; DNA replication
- 7. Synthesis of RNAs: Transcription
- 8. Flow of genetic information: Genetic code
- 9. Synthesis of Proteins: Translation
- 10. Mid-term test (multiple choice type)
- 11. Structure of cells I: pro-and eukaryotic cells, viruses, fungi, plant cells
- 12. Structure of cells II: nucleus, nucleolus, cell wall, cell membrane, transport
- 13. Structure of the cells III: ERs, Golgi, vesicles, lysosomes, cytoplasm, cytoskeleton
- 14. Mitochondria, the production of ATP
- 15. Organization of the genetic material, chromosomes, chromatids
- 16. Cell division: Mitosis and meiosis
- 17. Mendelian genetics
- 18. Tissues and cell types
- 19. Final test (multiple choice type)
- 20. Basics of immunology


Recommended books

- BIOLOGY A TEXTBOOK FOR PRE-MEDICAL COURSE STUDENTS (by University of Pécs Medical School)
- Campbell: BIOLOGY

SIZE-SCALE Metric = in meter/in metre

Centimeter=cm $1 \text{ cm}=10^{-2}\text{m}$ Kilometer=km $1 \text{ km}=10^{3}\text{m}$

Microscopes

Magnification

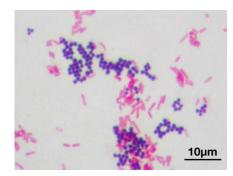
- Light microscope: 1000x
- Electron microscope: 500 000x

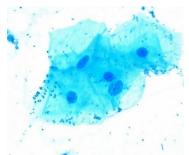
Resolution

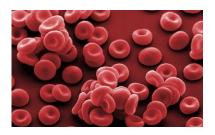
limits of resolution:

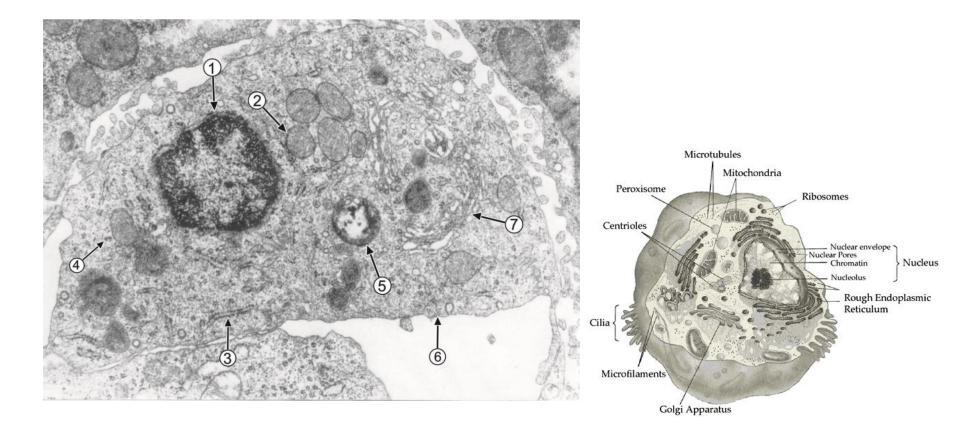
- Human eye: 1 mm
- Light microscope: 1 μm
- Electron microscope: 1 nm
- High resolution microscope

Contrasting


- Light microscope: dyes
- Electron microscope: metal particles







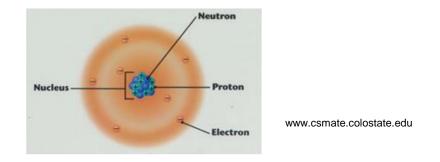
empty capsids following infection

Levels of organization in human body

- Biogenic elements
- Molecules, macromolecules
- Cells (viruses), cellular organelles
- Tissues
- Organs
- Organic systems

atom, ion, isotope, element, molecule

1. A substance composed of atoms with the same atomic number; it cannot be broken down in ordinary chemical reactions.


2. The smallest indivisible particle of matter that can have an independent existence.

3. Two or more atoms which are chemically combined to form a single species.

4. An atom that has lost or gained electrons from its outer shell and therefore has a positive or negative charge, respectively; symbolized by a superscript plus or minus sign and sometimes a number, e.g., H⁺, Na⁺, O²⁻ Cl⁻.

5. Atoms with the same atomic number but different numbers of neutrons; indicated by adding the mass number to the element's name, e.g., carbon 12 or ¹²C.

Atom, subatomic particles

- 2 parts of an atom: nucleus and electron cloud ("1cm/100m")
- Electron **orbital**: space of one electron
- Electron shells

composed of orbitals determine the size of the atom 4 major shells (K: 2 electrons, L: 8 electrons, M: 18 electrons, N: 32 electrons)

- Number of protons=number of electrons
- Atom is neutral=uncharged
- Atomic number: number of protons
- Atomic mass/weight = mass number: number of protons + number of neutrons

Subatomic particles

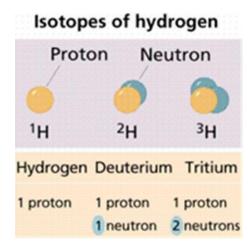
Name	Charge	Location	Mass	Atomic mass
Proton	+1	atomic nucleus	1.6726 X 10 ⁻²⁷ kg	1Dalton
Neutron	0	atomic nucleus	1.6750 X 10 ⁻²⁷ kg	1Dalton
Electron	-1	electron orbital		negligible (1/1800Da)

Dalton = Da = unit of mass/weight (NOT METRIC!) 1 Dalton = mass/weight of 1 Hydrogen ion (H⁺)

1 Dalton = mass/weight of 1/12 Carbon atom

Mass/weight of proteins, eg. 60 000Da=60kDa

Kilodalton (kDa)= 10^3 Dalton

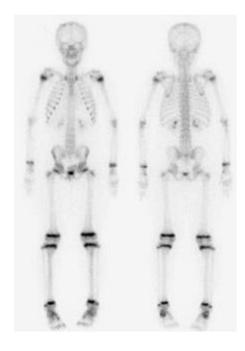

lons

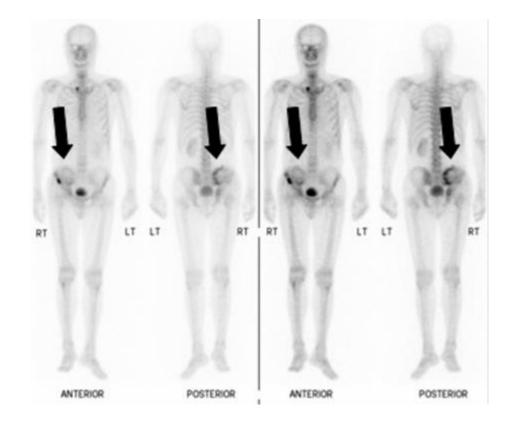
- more or less electrons than protons
- charged
- types:

cation (+ charge) :1st and 2nd groups tend to lose 1 or 2 electrons eg. Na⁺, Mg²⁺

anion (- charge) : 6^{th} and 7^{th} groups tend to gain 2 or 1 electrons eg. Cl^{-} , O^{2-}

ionic bond formation (between a cation and an anion)

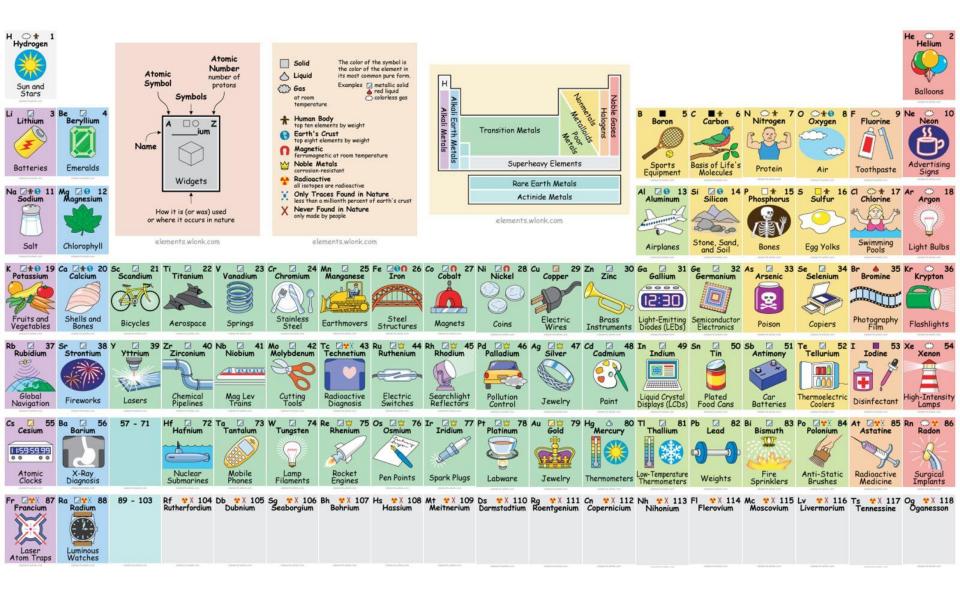



www.csmate.colostate.edu

- Same number of protons but different number of neutrons =
 Same atomic number but different mass number
- Types: **stable** and **unstable** =**radioactive** (nuclear splitting)
- Role in research and medicine: change of molecular density or energy emittion

Isotopes

- 1. to trace molecules, biochemical processes in cells (eg. Hershey –Chase experiment; Meselson-Stahl experiment)
- 2. nuclear medicine: scaning the structure and function of organs with radioisotope eg.Technetium-99m labeled organ specific molecules
 - skeletal scintigraphy/bone scan (bone metastasis!, inflammation)
 - thyroid gland (hormone production) Tc 99 or iodine 131
 - heart (blood supply, muscle activity)
 - secretion by kidney


https://commons.wikimedia.org/wiki/File:Scintigraphy_pelvis_with_bone_metastasis_01.jpg

Periodic Table of the Elements

1 H Hydrogen		Color Legend Alkali metals Other metals Semi-metals Semi-metals B										2 He Heturs					
3 Li Lithium	4 Be Beryillium		Tra	ansition me nthanides		Nonm			Boron	Symbol		s B Boron	6 C Carbon	7 N Nitrogen	8 O Oxygen	9 F Fluorine	10 Ne Neon
11 Na Sodium	12 Mg Magne- sium		Act	tinides		_		J	name I			13 Al Aluminum	14 Si Silicon	15 P Phos- phorus	16 S Sulphur	17 CI Chiorine	18 Ar Argon
19 K Potassium	20 Ca Calcium	21 SC Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manga- nese	26 Fe Iron	27 Co Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Ga Gallium	32 Ge German- Ium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Motyb- denum	43 Tc Techne- tium	44 Ru Ruthenkum	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 lodine	54 Xe Xenon
55 Cs Ceslum	56 Ba Barium	57-71 Lantha- nides see below	72 Hf Hatnium	73 Ta Tantalum	74 W Tungsten	75 Re Rheolum	76 Os Osmium	77 Ir Irklium	78 Pt Platinum	79 Au Gold	80 Hg Mercury	81 TI Thailium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	89-103 Actinides see below	104 Rf Rutherfor- dium	105 Db Dubnium	105 Sg Seabor- glum	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Uum Unun- oilium								

64 65 69 70 59 60 61 62 63 66 67 68 71 57 58 Lanthanides Tb Dy Yb Pr Nd Pm Sm Eu Gd Ho Er Tm Lu La Ce Gado-linium Terbium Dys-prosium Holmlum Thullum Ytterblum Lutetium Lantha-Cerium Praseo-Neo-Pro-Samarium Europium Erblum dymium dymkum methium num 91 89 ™ Th 92 U 94 96 97 99 101 102 93 95 98 100 103 Pa Ac Bk Cf Np Pu Am Cm Es Fm Md No Lr Actinides Actinium Pro-tactinium Thorium Califor-Ein-steinium Mende-levium Uranium Borkelium Nobelium Neptunium Plutonium Americium Curium Fermium Lawrencium

http://www.ptable.com/?lang=en

http://elements.wlonk.com/ElementsTable.htm

Periodic table

- D. I. Mendeleev
- **symbols of elements** (element: a substance composed of atoms with the same atomic number) carbon:C; nitrogen: N; calcium: Ca etc.
- rows=periods: elements with the same major quantum number/same major electron shell (K, L, M, N)
- coloumns=groups: elements with the same versatile/unpaired electrons
- **size of elements** increases from top to bottom and from right to left.
- **electron affinity=**the amount of energy *released* or *spent* when an electron is added to a neutral atom or molecule in the gaseous state to form a negative ion.

Electron affinity of elements increases from bottom to top, and from left to right.

The highest electron affinities are possessed by fluorine (F) and chlorine (CI).

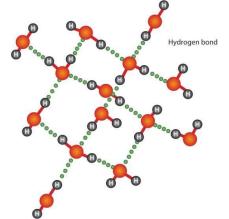
• relative atomic mass = molar mass : gram/mole , mole:6*10²³

Molecules

- 2 or more **atoms bound to each other** through covalent bond(s)
- central atom
- **stabile** compound
- **shape** determined by electronpairs and the electron attraction by atomic nuclei eg. Linear (H-H, O-C-O), V-saped (H-O-H)
- **polarity** determined by the electronegativity of atomic nuclei apolar (eg. H-H) or polar (eg. H-Cl) molecules

Chemical bonds in organic chemistry

1. Primary/Covalent bonds:


- Electrons are shared by the bound atoms (bonding electrons)
- Strong
- Inside molecules=intramolecular
- Types:
 - Single (H-H, C-C, H-O-H), Double (C=O, C=C), Triple (C=C, N=N)
 - Non polarized, polarized
- 2. Disulfide-bond/Disulfide-bridge: -S-S- (inside molecules, between molecules)
- 3. Ionic bond: between ions (eg. between Na⁺ and Cl⁻)

4. Secondary/Non-covalent bonds:

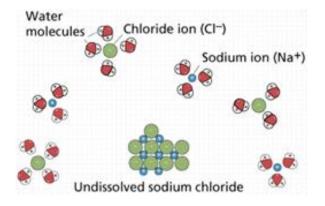
- Electrons are not shared by the bound atoms
- Weaker than covalent bonds
- Between molecules =intermolecular
- Types:
 - Van der Waals=London forces (between apolar molecules)
 - Dipole-dipole bonds (between polar molecules)
 - Hydrogen bond

Hydrogen bond

- is a secondary bond
- between a H atom covalently attached to an electronegative atom (atom with a high affinity for electrons) eg O, N, and an electronegative atom of another molecule or another part of the same molecule
- weaker than covalent bonds
- between water molecules, inside protein molecules, nucleic acids

Water chemistry

1) H-O-H ("V" shape)

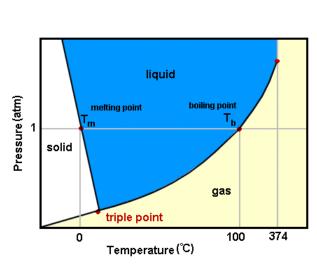

2) Polar (slightly negative and positive sites because of different affinities for electrons)

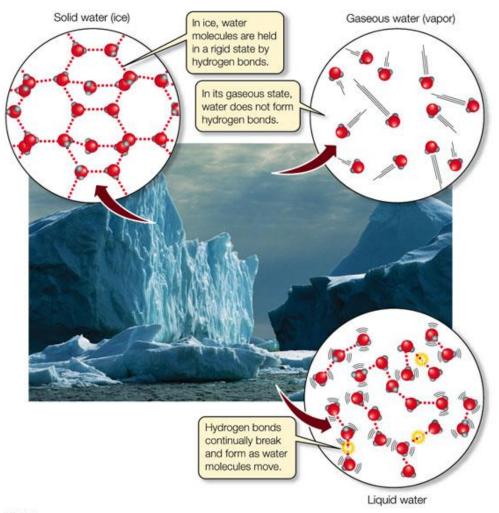
3) H-bond formation (1water/4 neighbouring water or with other molecules)

4) Solvent of ions and polar substances (hydrohilic substances) eg. Glucose, NaCl, alcohols,... (hydrophilic functional groups)

- 5) Tendency to dissociate into H⁺ and OH⁻ in liquid state
- 6) Existence in all three states of matter (gas, liquid, solid)
- 7) Expansion upon freezing due to crystal formation (stabilized by H-bonds)
 - leading to lower density

Water as solvent




Solution: a homogeneous mixture of two or more substances. A solution may exist in any phase.

Solute is the substance that is dissolved in a solution (eg. NaCl).

Solvent is the substance in which the solute is dissolved (eg. water). The solvent is present in greater amount than the solute.

States of matter of water

LIFE: THE SCIENCE OF BIOLOGY, Eighth Edition @ 2007 Sinauer Associates, Inc. and W. H. Freeman & Co.

Water

role in biology

1) enviroment for life

a. cohesive behavior (H-bonds!)

b. stabilisation of temperature

c. expansion upon freezing

d. dissolving capability

e. weak viscosity (medium for transport, reactions)

f. transparency

2) partner in biochemical reactions as either substrate or endproduct

a. condensation (dehydration)

b. hydrolysis (hydration)

3) role in photosynthesis (photolysis of water)

4) free movement through biological membranes without energy requirement (osmosis)

5) pH

pH, pH scale

pH = negative logarithm (to the base 10) of H⁺ concentration in a water based solution

pH value can be any between 0 and 14 because of the concentration of H⁺ ranging between 10^{0} and 10^{-14} mole/liter

[H⁺]x [OH⁻]= 10⁻¹⁴ mole/liter=CONSTANT

pH=7 concentration of H⁺ equals to concentration of hydroxide ions (**neutral** solution)

pH<7 concentration of H⁺ is more than concentration of hydroxide ions (**acidic** solution)

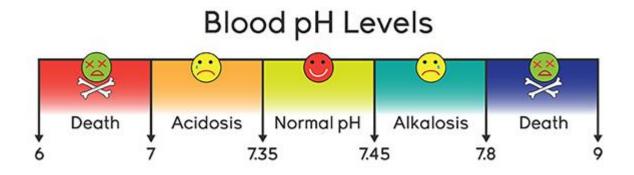
pH>7 concentration of H⁺ is less than concentration of hydroxide ions (**basic** solution)

			Liquid drain cleaner, Caustic	
Concentration of Hydrogen ions compared to distilled water	1/10,000,000	14	soda	
	1/1,000,000	13	bleaches, oven cleaner	
	1/100,000	12	Soapy water	
	1/10,000	11	Household Ammonia (11.9)	Examples of solutions and their respective pH
	1/1,000	10	Milk of magnesium (10.5)	
	1/100	9	Toothpaste (9.9)	
	1/10	8	Baking soda (8.4), Seawater, Eggs	
	0	7	"Pure" water (7)	
	10	6	Urine (6) Milk (6.6)	
	100	5	Acid rain (5.6) Black coffee (5)	
	1,000	4	Tomato juice (4.1)	
	10,000	3	Grapefruit & Orange juice, Soft drink	
	100,000	2	Lemon juice (2.3) Vinegar (2.9)	
	1,000,000	1	Hydrochloric acid secreted from the stomach lining (1)	
	10,000,000	0	Battery Acid	

Acid, Base, Buffer

Acid: lowers pH

- substance that **increases the H⁺ concentration** of an aquous solution
- by dissociating into H⁺
- eg. HCl , H₂CO₃


Base: increases pH

- substance that **decreases the H⁺ concentration** of an aquous solution
- by accepting H⁺ or by dissociating into OH⁻
- eg. NaOH, NH₃

Buffer: minimizes changes of pH ("pH regulator")

- substance easily shifting between its H⁺ dissociated and H⁺ accepted forms
- weak acid and its corresponding base
- eg. H_2CO_3 and HCO_3^+

Blood pH

Maintenance of blood pH mainly by H_2CO_3/HCO_3^- buffer system:

- chemical shifting between H₂CO₃ and HCO₃⁻ H₂CO₃=HCO₃⁻ +H⁺
- elimination or retain of CO₂ by lungs
- elimination of H⁺ or retain of HCO₃⁻ by kidneys

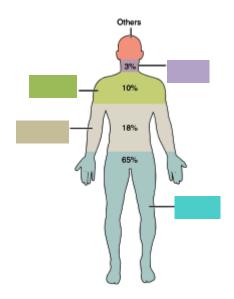
Functional groups / chemical groups in organic chemistry

A complex of covalently joined atoms (minimum 2 atoms are coupled to each other).

The group is **covalently linked to** the carbon backbone (skeleton) of a **molecule**.

The group is responsible for

- the chemical properties of the molecule (eg. solubility, polarity, charge, acidic/basic feature...)
- the **chemical interactions** (bond forming capability) of the molecule.


Functional groups in organic chemistry

				Water	Acid/Base	Charge	Molecules	Bonds		
Functional group	Class of compounds	Structural formula	Example	Ball-and- stick model	solubili ty					
Hydroxyl —OH	Alcohols	R-OH	н – с – с – он н н Ethanol	***	yes	no	no	Carbohydrates	ester	
Carbonyl —CHO	Aldehydes	R−¢()	H-c-c-		yes	no	no	Carbohydrates eg. glucose		
Carbonyl CO	Ketones		H O H H - C - C - C - H H H Acetone	w.	yes	no	no	Carbohydrates eg. fructose		
Carboxyl –COOH	Carboxylic acids	R-COH	H-C-CoH Acetic acid	***	yes	weak acids (protein buffers)	negative	Organic acids, eg. citric acid; Aminoacids, proteins	ester, peptide	
Amino -NH2	Amines	R-N H	H = H = H = H = H = H Methylamine		yes	bases	positive	Aminoacids, proteins	peptide	
Phosphate -OPO3 ²⁻	Organic phosphates	0 R-O-P-O ⁻ O ⁻	HO O C H-C-OH O H-C-O-P-O- H O- 3-Phospho- glyceric acid	"E.	yes	weak acids (phosphate buffers)	negative	Nucleotides Nucleic acids Phospholipids	ester, phospho- anhydride (macroerg)	
Sulfhydryl –SH	Thiols	R — SH	H H H-C-C-SH H H Mercapto- ethanol	**	yes	no	no	Aminoacids eg. cysteine	disulfide	

Biogenic elements

- elements present in living systems
- 25
- types: primary
 - secondary
 - tertiary =trace

4 elements compose 96% of human body

Elements of human body primary, secondary, tertiary (trace)

- 1. Oxygen (65%)
- 2. Carbon (18%)
- 3. Hydrogen (10%)
- 4. Nitrogen (3%)
- 5. Calcium (1.5%)
- 6. Phosphorus (1.0%)
- 7. Kalium/Potassium (0.35%)
- 8. Sulfur (0.25%)
- 9. Natrium/Sodium (0.15%)
- 10. Magnesium (0.05%)
- Copper, Zinc, Selenium, Molybdenum, Fluorine, Chlorine, <u>Iodine</u>, Manganese, Cobalt, <u>Iron</u> (0.70%)
- 12. Lithium, Strontium, Aluminum, Silicon, Lead, Vanadium, Arsenic, Bromine (≤0,5%)

Elements of human body

oxygen: 2 valences, electronnegative

- in water
- in CO_2
- in all organic molecules, in many functional groups
- in H-bond formation
- oxygenates H into water during ATP (energy) synthesis
 = oxidant

carbon: 4 valences

- formation of carbon backbone=skeleton of organic molecules (central atom) formation of complex and diverse molecules formation of single, double, triple bonds formation of linear, and ring-like backbones
- in many functional groups
- in CO_2
- is oxidized during breakdown processes (eg. glucose breakdown)

hydrogen: 1 valence

- in water
- in all organic molecules, in many functional groups
- in H-bond formation
- is reduced into water during ATP (energy) synthesis

Elements of human body

nitrogen: 3 valences, electronnegative

- in aminoacids and proteins
- in nucleotides and nucleic acids (purine, pyrimidine bases)
- (in a few lipids, carbohydrates)
- in amino group
- in H-bond formation

calcium:

- bones, teeth (rigidity)
- blood coagulation
- muscle contraction

phosphorous:

- bones, teeth (rigidity)
- in nucleotide, nucleic acids
- in phosphate functional group

Elements of human body

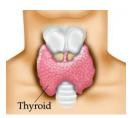
natrium=sodium and kalium=potassium:

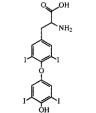
• membrane potential, action potential

sulfur:

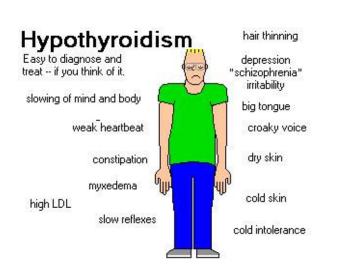
- in thiol functional group
- in a few aminoacids, proteins

magnesium:


- in enzyme function
- in muscle cell and nervous system function


iodine:

• in thyroid gland hormone (thyroxine)


iron:

• in haemoglobin (O₂ gas transport in blood)

FORMULA 1 L- AND D- THYROXINE

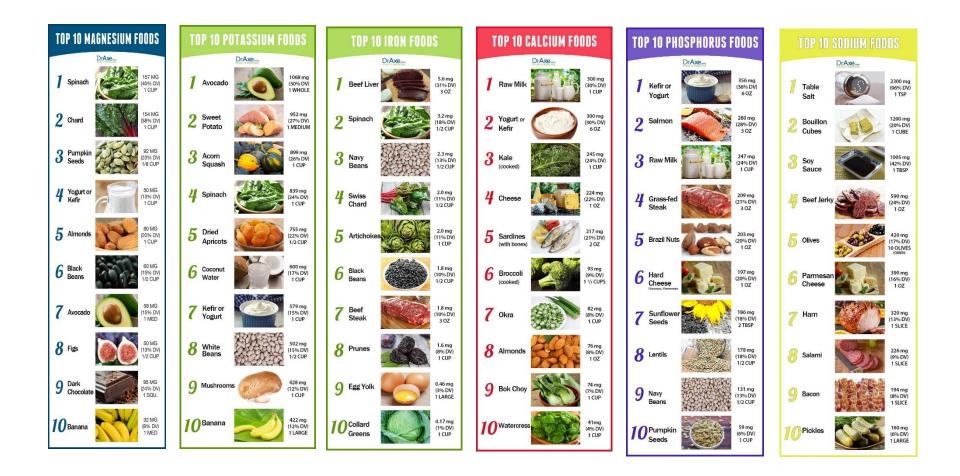
Growth failure Mental retardation Flat back of head Abnormal ears Many "loops" on finger tips Palm crease Special skin ridge patterns Unilateral or bilateral absence of one rib Intestinal blockage Umbilical hernia Abnormal pelvis Diminished muscle tone

0,00

law.

0

EF


Broad flat face Slanting eyes Epicanthic eyefold Short nose

Short and broad hands Small and arched palate Big, wrinkled tongue Dental anomalies

Congenital heart disease

Enlarged colon

Big toes widely spaced

