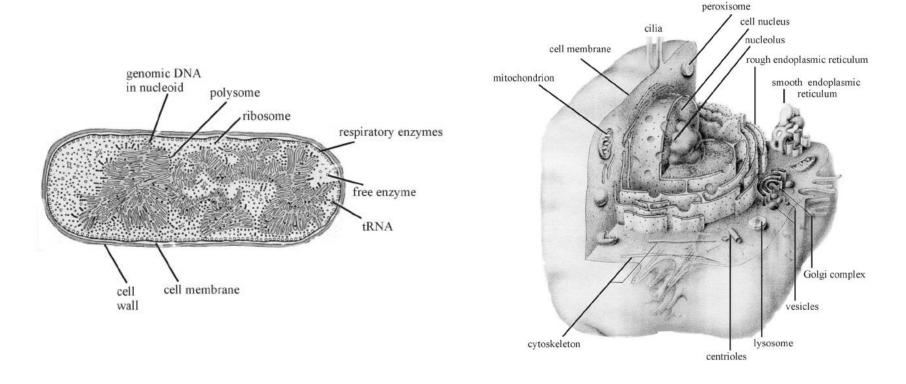
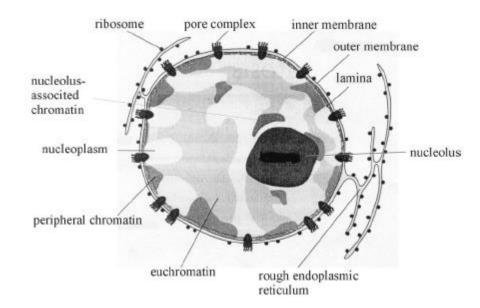

Organization of the genetic material, chromosomes, chromatids


> Oktavia Tarjanyi M.D. Gergely Berta M.D.

2011. 08. 11.

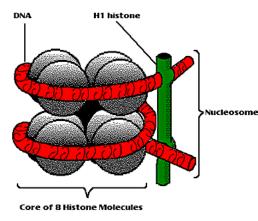
Location of the genetic material

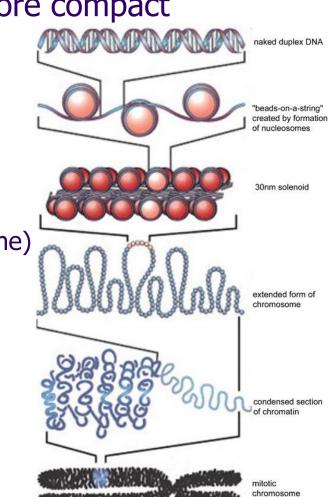
- Prokaryotes: in the cytoplasm \rightarrow nucleoid
- Eukaryotes: in the nucleus \rightarrow chromatin


Why do eukaryotes have chromatin?

- Chromatin is a packaged form of the DNA into a smaller volume to fit in the cell
- Proteins of the chromatin strengthen the DNA and allow mitosis and meiosis because they allow the formation of the chromosomes.
- Proteins of the chromatin serve mechanisms to control gene expression.

Chromatin

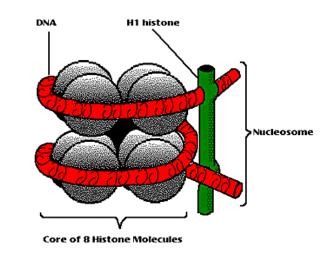

- only in eukaryotic cells
- in non-dividing cells (in the interphase)
- euchromatin: transcriptionally active
- heterochromatin: transcriptionally inactive
 - perinucleolar/nucleolus-associated
 - peripheral/marginal
 - diffuse



Chromatin organization

- condensation: chromatin becomes more compact
- levels:
 - DNA double helix
 - beads-on-a-string:
 - nucleosome: histone octamer + DNA
 - linker DNA
 - (chromatosome: nucleosome + H1 histone)
 - solenoid
 - looped domains
 - chromosome

The chemical composition of chromatin


- DNA
- Proteins
 - Histones
 - Nonhistone proteins
- RNA
 - Pre-mRNA, mature mRNA
 - rRNA
 - tRNA ...etc.
- inorganic ions
 - Mg⁺⁺
 - Ca++

Proteins of chromatin I.

Histone proteins

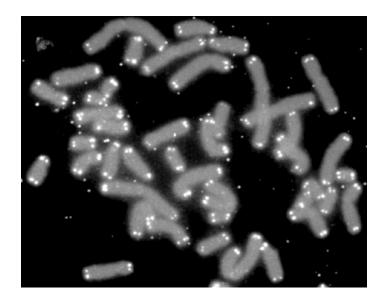
- basic proteins (rich in Lysine, Arginine)
 - Nucleosomal histones (H2A, H2B, H3, H4)
 - octamer in nucleosome
 - H1 histone
 - outside the nucleosome
 - induces solenoid formation
- are highly conserved
- structural function
- regulation of gene expression
- chemical modifications
 - Phosphorylation \rightarrow chromatin condensation
 - Acetylation \rightarrow chromatin decondensation

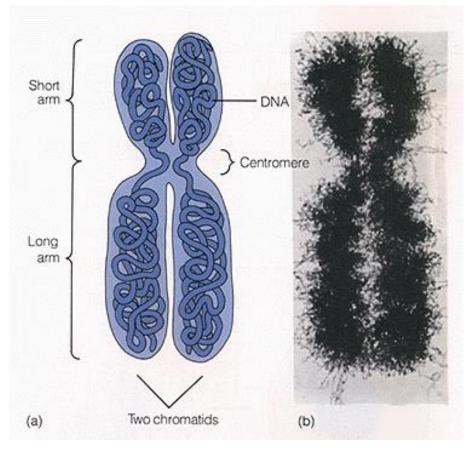
Nucleosome http://www.accessexcellence.com/AB/GG/nucleosome.gif

Proteins of chromatin II.

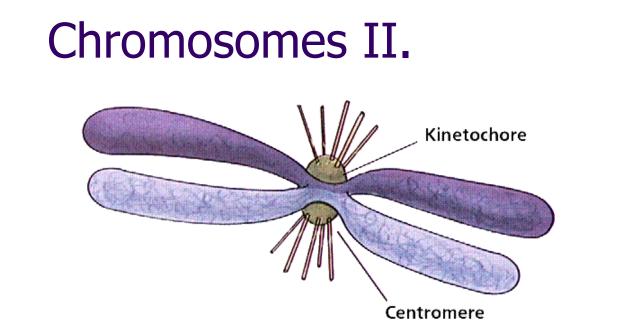
Nonhistone proteins

- tissue-specific expression
- different in structure
- different in function
 - Structural proteins (e.g. lamins)
 - Enzymes (e.g. DNA, RNA polymerases)
 - Transcription factors
 - Receptor proteins (e.g. steroid receptors)
 - Transport proteins (e.g. importin)
 - Chaperones (e.g. nucleoplasmin)

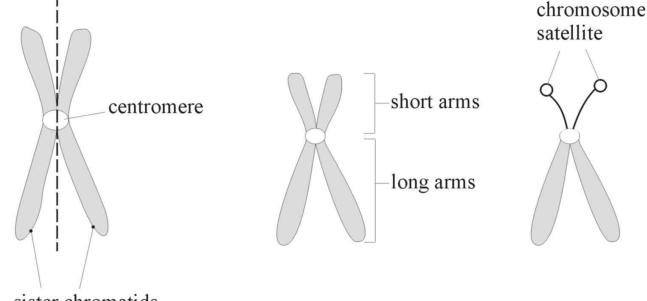

Genetic terms associated with chromosomes



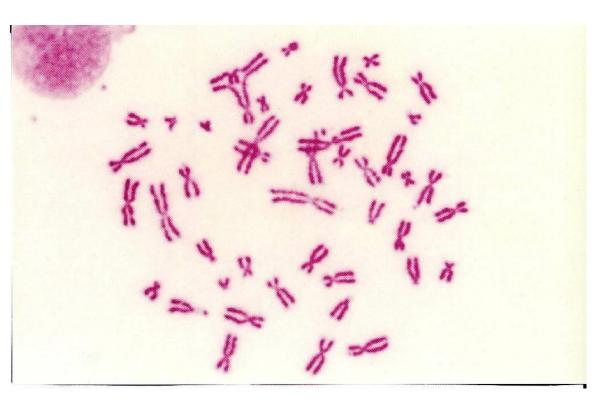
- Gene: region of DNA that codes for a protein
- **Locus:** the site of a gene in a chromosome
- Homologous chromosomes: members of a chromosome pair
- Somatic chromosomes/autosomes: 1-22
- Sex chromosomes: X, Y


Chromosomes

- chromatids
- centromere
- telomeres
- short (p) and long (q) arm



- types (based on the position of the centromere):
 - metacentric
 - submetacentric
 - acrocentric


sister chromatids

Karyotype

• The set of all chromosomes deriving from a cell's nucleus is called karyotype.

The number of the chromosomes is different in various species. For example humans have 46, dogs have 78, cats have 38.

The normal human karyotype

44 autosomes + 2 sex chromosomes (altogether 23 pairs = $46 \rightarrow 2n$)

humans:

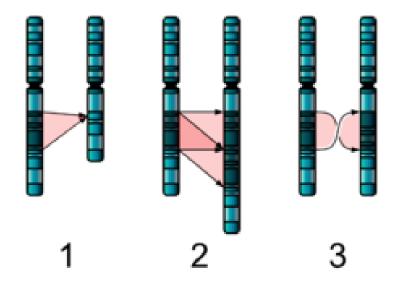
males: 44+XY or 46, XY

females: 44+XX or 46, XX

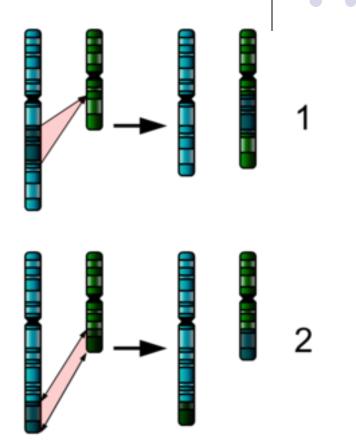
	allegeousts allegeouste	(Example)			Charged St.	Clarged)	
)(A. Market	Thought the		(ULIO) Charles		(build)	
)	,	H H H H H	11 0600 17	n Mag u	
38	88		96	11		1	9
19	20		21	22		x	¥

Diploid / haploid cells

• Sexually reproducing species have somatic cells (body cells), which are diploid [2n] having two sets of chromosomes, one from the mother and one from the father.


• Gametes, reproductive cells (egg, sperm), are haploid [n]: they have one set of chromosomes.

• Gametes are produced by meiosis of a diploid germ line cell.


• When a male and a female gamete merge (fertilization), a new diploid cell (fertilized egg) is formed. From this cell a new organism develops.

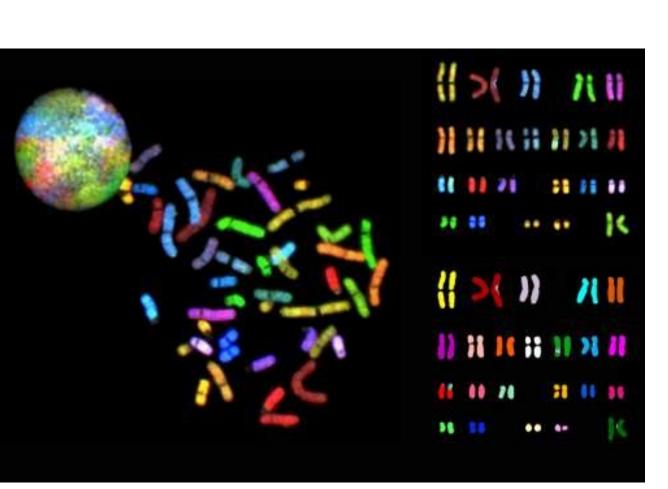
Structural chromosome abnormalities

Single chromosome mutation
1) Deletion (e.g. Lejeune syndrome → cri du cat)
2) Duplication
3) Inversion

Two-chromosome mutations 1)Insertion 2)**Translocation**

Numerical chromosome abnormalities

- Polyploidy (e.g. triploidy, 3n) \rightarrow **lethal**
- Aneuploidy
 - Monosomy
 - Normally Y chromosome in males
 - Turner syndrome (44 + X0)
 - Trisomy
 - Down syndrome (trisomy 21)
 - Patau syndrome (trisomy 13)
 - Edwards syndrome (trisomy 18)


Down syndrome (trisomy 21)

>) X 16 1()(>(7))) 21 22 X Y 19

FISH

