Nuclear medicine studies of the digestiv system

Zámbó Katalin Department of Nuclear Medicine

Imaging tehniques

Anatomy

Physiology

Metabolism Molecular

Rtg. / CT

PET / SPECT

MRI

MR spectroscopy

fMRI

Ultrasound

Hybrid imaging: SPECT/CT, PET/CT, (PET/MRI)

The short history of nuclear medicine

- Discovery of radioactivity (Bequerel 1896)
- Using of radioactive material as a tracer (Hevesy György 1923)

- Gamma-camera (Anger 1951)

Radioactivity

is the spontaneous disintegration (decay) of the nucleus of a radioactive atom, while the element becomes to an other one.

Sub-atomic particles

Table 1.1. PHYSICAL PROPERTIES OF SUB-ATOMIC PARTICLES

Particle	Electric Charge	Weight		Location
		Grams	a.m.u.	
Proton	+1	1.66×10^{-24}	1.0	Nucleus
Neutron	neutral	1.66×10^{-24}	1.0*	Nucleus
Electron	-1	9.1×10^{-28}	0.00054	Around nucleus

^{*}The neutron is actually 0.08% heavier than the proton.

Radioactive isotopes

Only certain combinations of protons and neutrons are stable, the other ones are radioactive, which become stable form by different radioactive radiations.

Number of protons

= elemental identity number

Number of protons and neutrons

= mass number

- Atoms with the same number of protons but differing number of neutrons are called isotopes of that element.
- The behaviour of the different radioactive isotopes of an element is the same as the stable form in every conditions.

The activity

of a radioactive element is usually given in disintegrations per second or minutes, this is the *dps or dpm*

The unit of the activity

- 1 Bq (Bequerel) = 1 disintegration/second
- $1 \text{ kBq} = 10^3 \text{ disintegrations/sec}$
- $1 MBq = 10^6 disintegrations/sec$ (used in diagnostics)

Measurement

- counts/second (cps) or counts/minute (cpm)

Half-life

is defined as the time required for one-man of the atoms in a group of radioactive atoms to decay.

- Physical half-life is characteristic for an element, independent on the external conditions.
- Biological half-life is depend on the physiological conditions (e.g. increased fluid input).
- Effective half-life: $1/T_{eff} = 1/T_{phys} + 1/T_{biol}$

Energy

is emitted during the decay, constant for the several radioactive atoms.

eV, keV (used in diagnostics) or MeV (1 eV is extremly small!)

Three kind of the radioactive radiation

- 1. Corpuscular alpha
 - -beta, +beta (positron)
- 2. Electromagnetic gamma

Alpha radiation

- the emission of a helium nucleus (2 protons + 2 neutrons)
- the ionizating property and biological effectivity is great
- range in tissue is with in a few micrometers
- cannot be detected outside!
- e.g. ²²⁶Radium for therapy (it is a new trend!)

Beta radiation

- the emission of high-speed electrons
- the biological effectivity is smaller than the alpha radiation
- the range in tissue is a few millimeters
- external detection is almost impossible
- the biological damage to tissues is high
- very suitable for radiotherapy
- e.g. ¹³¹Iodine for thyroid ablation

Gamma radiation

- really electromagnetic radiation
- phisically similar to X-rays, but it comes from the nucleus of the atom
- very penetrated and easily pass trough tissue
- it can be detected externally well!
- e.g. 99mTechnetium for the diagnosis

The most commonly used isotopes:

Isotope	Radiation	Half-time	Energy
99m-Tc	γ	6 hours	140 kev
131-iodine	γ	8 days	364 keV
	β		180 keV
123-iodine	γ	13.2 hours	159 keV
111-indium	γ	2.8 days	172.2 keV
201-thalliun	η	3 days	76 keV(95%)

Equipments I.

Gamma-camera

- it "sees" the whole entire area below the detector

Layout of the gamma-camera

Fig. 1.11. The basic components of an Anger γ -ray camera. There is a one-to-one correspondence between the location of γ -ray interactions in the scintillation crystal and the location of the dot flashed on the oscilloscope screen.

Equipments II.

SPECT Single Photon Emission Computer Tomograph SPECT/CT: multimodality!

- the computer program reconstruates the transversal, sagittal and coronal slices of the organ

+ fused image

The principle of the SPECT

The detectors whirl around the patient and make pictures from different steps. The reconstruction and/or the reorientation are made by the computer program from this pictures after the imaging. Transversal, sagittal and coronal slices are reconstruated and evaluated.

+Beta (positron) radiation

- too many protons are in the nucleus
- its life is very short, when it slows down, it combines with a normal electron in a process known annihilation, which destroyes both the electron and positron and produces two energetic photons each with 511 keV
- they are used for PET examinations
- the metabolic changes of the tumors, the brain and the heart can be detected
- e.g. 18F-FDG for glucose metabolic studies

Equipments III.

PET: Positron Emission Tomograph

PET/CT: multimodality!

The principle of the PET

Liver metastasis of rectal cancer by 18F-FDG PET/CT fused image

Increased glucose metabolism in the metastasis

Multiplex metastases of pancreas tail cancer by 18F-FDG PET/CT fused image

Therapeutic changes of multiplex liver metastases of sigmatumor by 18F-FDG PET

Before therapy

After thera

Radiation exposure

- principle of ALARA (as low as reasonable achieveble) both the patients and the staff
- correct indication of the examination!
- examination of pregnant women is contraindicated
- children should be examined carefully

Radionuclide studies

- are based on the function of an organ or an organ system
- are very sensitive, but aspecific methods
- only one organ or tissue is examined
- are easily performed
- need no any premedication
- are not associated with any morbidity and complication, have only minimal risk
- are very good for screening studies

Scintigraphies need

- gamma radiating isotope is detected by outside
- carrier molecule is participating in the examined function of the organs
- together is radiofarmaceutical
- administered in sterile intravenous NaCl injection
- the delayed times are different before the examinations
- imaging by scintillation detector

Static examination (scintigraphy

- an optimal time-period after the subject administration is delayed and several pictures are made of the organ from different directions

Dynamic study

- a frame-serie is stored in the computer from the time of the isotope injection during an optimal time-period of the examined organ function

Anatomy of the liver

Liver scintigraphy

The labelled colloid (200 MBq 99mTc-Fyton) is enhanced in the RES-cells of the liver

Static imaging (after 20 minutes) from 6 directions + SPECT or SPECT/CT examination is very useful

The focal defect is signed by the decreasing and/or the lack of the activity

Indications: primary tumors, metastases, cysts, haemangioma, FNH

Focal parenchymal defect

Static imaging

Focal parenchymal defect

Liver SPECT/CT fused image

Liver blood-pool scintigraphy

The blood-pool of the liver is labelled by 99mTc-pyrophosphate-red blood cells:

At first inactive pyrophosphate is injected i.v.,

20 minutes later 500 MBq 99mTc-pertechnetate is injected i.v., too

Imaging is performed in equilibrium from 6 directions (similar to colloid scan) + SPECT or SPECT/CT

Haemangioma is seen by increased activity

Liver colloid and blood-pool SPECT/Colloid fused image in haemangioma

Colloidal scintigraphy

Blood-pool scintigraphy

Focal parechymal defect

Increased blood pool

Hepatobiliary scintigraphy L

The goal of the examination:

- secretion function of the liver from the blood
- excretion function of the bile through the liver cells
- function of the gall bladder (contraction by Sorbitole ejection fraction)

The way of the radioactive agent - 99mTc-HIDA - from the blood to the bowels:

- parenchymal part of the liver
- ductus hepaticus
- ductus choledochus
- cholecysta
- bowels

Normal hepatobiliary dynamics

Hepatobiliary scintigraphy

y

Indications:

- Post cholecystectomical syndrome
- Bile excretion disorders
- Acut or chronic cholecystitis
- Cholecysta dyskinesis
- Focal nodular hyperplasy
- Flow of the bile to the abdomen cavity
- Atresie of the ductus hepaticus or choledochus
- Transplantation of the liver

Obstruction of the papilla Vateri

Normal ejection fraction of the gall bladder: >1%/min/

Failed contraction of the gall bladder

Focal nodular hyperplasy (FNH):

- higher perfusion
- normal or higher colloid activity
- higher blood-pool activity
- higher hepatobiliary activity

Somatostatin receptor scintigran

Injected subject: 111-Indium-pentetreotide

(somatostatine analog peptid are binding to the receptors overexpressed on the surface of tumor cells)

Imaging time: 24 and 48 hours after the intravenous injection, SPECT/CT at the delayed time

Indications: - carcinoid

- GEP tumors

Carcinoid in the pancreas head by 111-In-pentetreotide

Static imaging

Abdomen

Chest

Carcinoid in the pancreas head by 111-In-pentetreotide

SPECT imaging

Carcinoid metastasis in the liver by 99mTc-colloide and 111-In-pentetreotide

SPECT imaging

Carcinoid in the pancreas head, st. p. surgery, metastases?

Static imaging by 111-In-pentetreotide

Multiplex carcinoid metastases in the liver by 111-In-pentetreotide

Multiplex carcinoid metastases in the bones by 111-In-pentetreotide

SPECT

NET in the small intestine with multiplex liver metastases by 111-In-pentetreotide

Adrenerg receptor scintigra

Injected subject: 123-iodine or 1317 iodine-MIBG (metaiodobenzylguanidine) is binding to adrenerg receptors

Imaging time: 6 and 24 or 24 and 48 hours after the intravenous injection, SPECT/CT at the delayed time

- **Indications:** neuroendocrin tumors
 - pheochromocytoma
 - neuroblastoma

Liver metastases of GEP tumor by 123-I-MIBG

(examination before 131-I-MIBG therapy)

Paraaortic lypmh node metastasis after operation of NET of small intestine by 123-I-MIBG

Oesophagus scintigraphy and gastric emptying study

Radiopharmaceutical: the patient drink water for oesophagus study and/or eat a meal in which a solid component of the meal (scrambled egg), a liquid component of the meal (water), or both for gastric emptying study, are mixed with a small amount of radioactive material 40-80 MBq 99mTc-DTPA

Dynamic examination is started immadiately

Generation of time-activity curves by software program

Calculation of parameters: half time, emptying speed of the radioactive meal through to the stomach and bowels

Indications: motility failures of eosophagus and/or stomach, cardiac and pyloric stenosis, tumors

Gastro-oesophageal stenosis

Slower passage through the oesophagus

Gastric emptying study

Normal examination

Pyloric stenosis

Definition of Meckel's diverticulum

- An outpouching from the small intestine, due to failure of obliteration of the yolk stalk (which normally disappears during embryonic life).
- About 2% of people have a Meckel's diverticulum. It is usually located about 2 feet (60 cm) above the junction of the small intestine with the colon (the large intestine).
- A Meckel's diverticulum can become inflammed, ulcerate, bleed, perforate or cause obstruction of the small bowels. If it is inflammed or perforated, it is usually removed by surgery.

Examination of Meckel's diverticulum

Radiopharmaceutical: 99mTc-pertechnetate/i.v/ Anterior static imaging 10, 30, 60, 120 minutes after the injection

Pathological increased activity in the region of bowels

