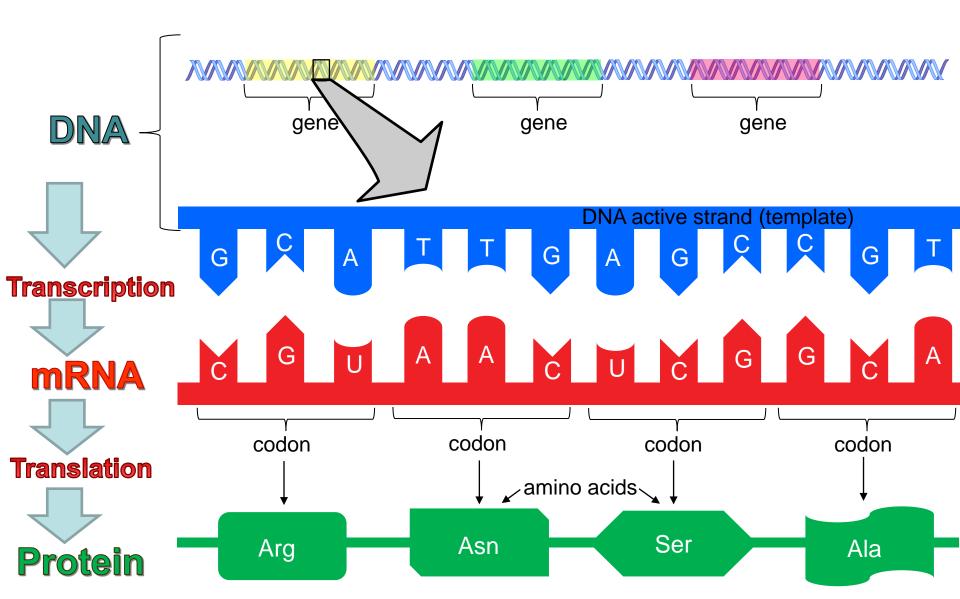

Translation: The genetic code


ribosome

The flow of genetic information: the genetic code

DNA **Transcription** pre-mRNA mRNA processing protein **Translation** ribosome

The genetic code: the information for building up proteins- the information which shows what the amino acid sequence of a protein will be.

The flow of genetic information: the genetic code

- 1. It is a <u>triplet code</u>: 3 nucleotides (bases) code 1 amino acid.
 - The triplet which is coding the amino acid on the mRNA is called codon.
 - 4 bases form the triplets → 4³ = 64 combinations are possible.
 - Only 61 code amino acids: sense codons
 - there are 3 STOP codons (= shows where translation should stop)
 - To code for the 20 amino acids a sequence of 2 bases would not be enough (4²=16)

The features of the genetic code Second letter

	U	С	Α	G	
U	UUU Phenyl- alanine (Phe) UUA Leucine (Leu)	UCU UCC Serine UCA (Ser) UCG	UAU Tyrosine (Tyr) UAA STOP	UGU Cysteine UGC (Cys) UGA STOP UGG Tryptophan (Trp)	U C A G
С	CUU CUC CUA (Leu) CUG	CCU CCC Proline CCA (Pro) CCG	CAU Histidine (His) CAA Glutamine (Gln)	CGU CGC Arginine CGA (Arg) CGG	U C A G
A	AUU Isoleucine (IIe) AUA Methionine (Met) and START	ACU ACC Threonine ACA (Thr) ACG	AAU Asparagine (Asn) AAA Lysine (Lys)	AGU Serine (Ser) AGA Arginine (Arg)	U C A G
G	GUU GUC Valine (Val) GUG	GCU GCC Alanine GCA (Ala) GCG	GAU Aspartic acid (Asp) GAA Glutamic acid (Glu)	GGU GGC Glycine GGA (Gly) GGG	U C A G

Third letter

- 2. <u>Degenerate (redundant)</u>: 1 amino acid can be coded by multiple codons.
- (20 amino acids are coded by 61 sense codons)

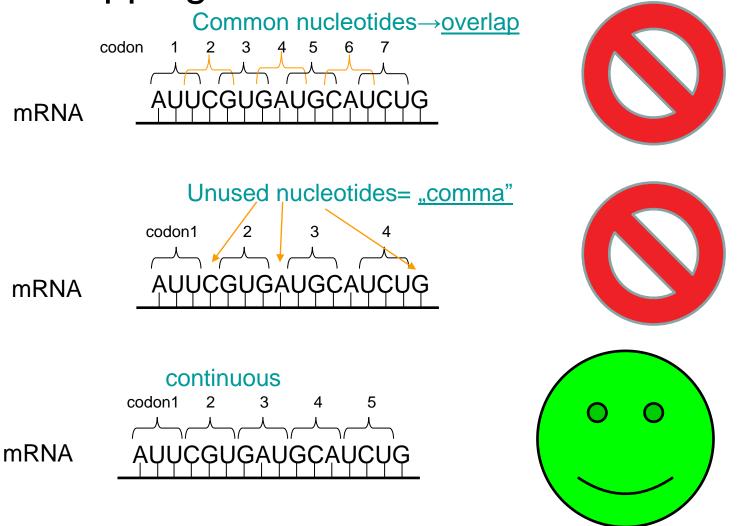
 Second letter

U G UCU UAU UGU U Phenyl-Cysteine Tvrosine alanine (Phe) UCC UGC UUC UAC (Tyr) (Cys) Serine (Ser) **UCA** STOP Leucine STOP Tryptophan UGG **JAG UCG** UUG (Leu) G CCU CAU CUU CGU Histidine (His) CGC Arginine CUC Leucine CCC CAC Proline (Leu) CUA CCA (Pro) CGA (Arg) Glutamine CUG CCG CGG CAG (Gln) **ACU** AAU Asparagine AGU Serine AUU U Isoleucine AUC AAC (Asn) **ACC** AGC (Ser) Threonine (lle) AGA Arginine **ACA** (Thr) AUA AAA Lysine AUG Methionine (Met) **ACG** AAG (Lys) AGG (Arg) GUU **GCU** GAU Aspartic GGU U acid (Asp) **GAC** GGC Glycine GUC Valine GCC Alanine C **GUA GGA** (Gly) (Val) **GCA** (Ala) **GAA** Glutamic **GUG GCG** GAG acid (Glu) GGG

First letter

Third letter

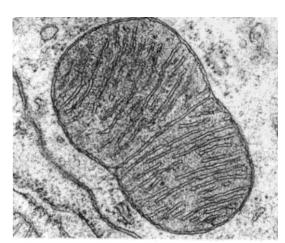
3. <u>Unambiguous</u>: 1 codon codes only one amino acid.

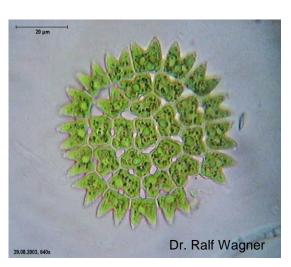

Second letter

	U	С	Α	G	
U	UUU Phenyl- alanine (Phe) UUA Leucine UUG (Leu)	UCU UCC Serine (Ser) UCG	UAU Tyrosine (Tyr) UAA UAG STOP	UGU Cysteine UGC (Cys) UGA STOP UGG (Try)	U C A G
С	CUU CUC Leucine CUA (Leu) CUG	CCU CCC Proline CCA (Pro)	CAU Histidine (His) CAA Glutamine CAG (Gln)	CGU CGC Arginine CGA (Arg)	UCAG
Α	AUU Isoleucine (IIe) AUA Methionine (Met) and START	ACU ACC ACA ACG	AAU Asparagine (Asn) AAA Lysine AAG (Lys)	AGU Serine (Ser) AGA Arginine AGG (Arg)	UCAG
G	GUU GUC _{Valine} GUA (Val) GUG	GCU GCC Alanine GCA (Ala) GCG	GAU Aspartic acid (Asp) GAA Glutamic GAG acid (Glu)	GGU GGC Glycine GGA (Gly) GGG	UCAG

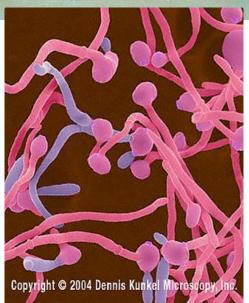
First letter

Third letter

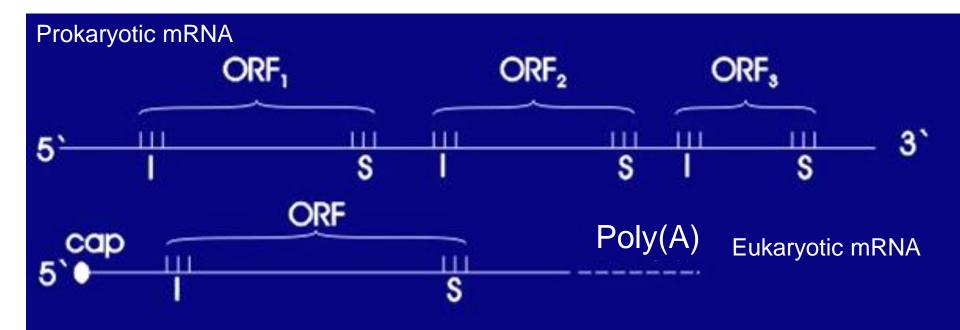

4. <u>Continuous</u>: There is no "comma" or overlapping between the codons.



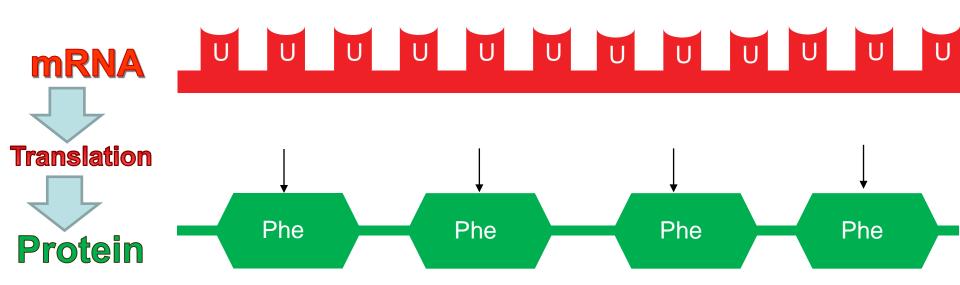
5. <u>Universal</u>: valid in the whole living world on the planet.


There are exceptions, with minor alterations, eg.:

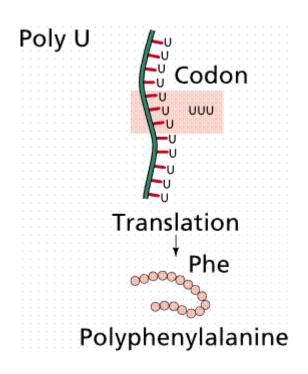
Mitochondria, ciliates, green algae, some fungi

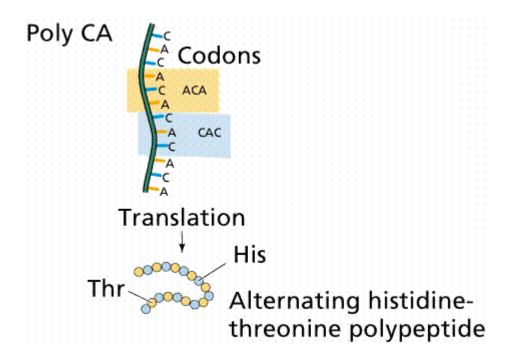


The reading of the genetic code

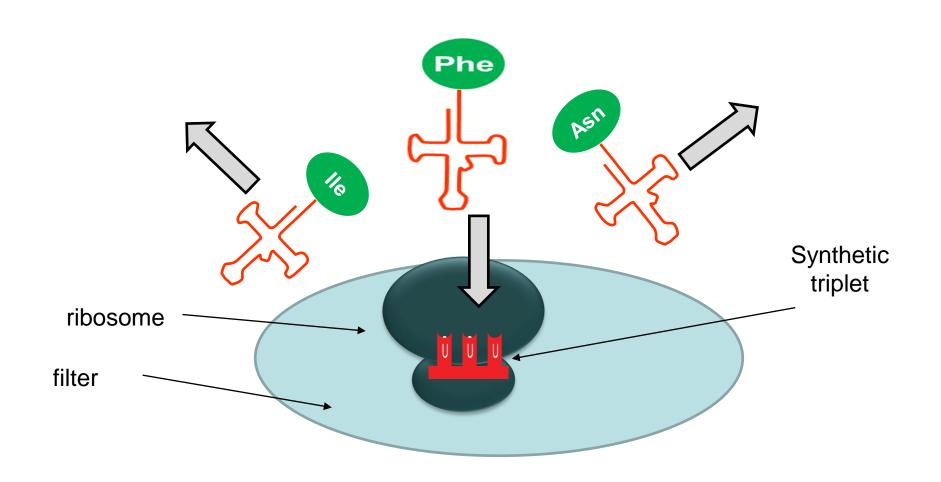

- ORF: Open Reading Frame
- the sequence which codes 1 polypeptide chain.
- Starts with a start codon (AUG) and ends with a STOP codon.

The discovery and deciphering of the genetic code


- Nirenberg and Khorana, 1960s
- 1. *In vitro* translation of synthetic polynucleotides


Eg. poly-U → Poliphenylalanine

The discovery and deciphering of the genetic code


- Nirenberg and Khorana, 1960s
- 1. *In vitro* translation of synthetic polynucleotides

The discovery and deciphering of the genetic code

2. Aminoacil-tRNA binding assay

